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The variational principle of virtual velocities (principle of stationary 

total rate of work) is introduced, under the assumption of steady-state 

creep, with finite displacements and small extensions, as compared to 

unity. This principle represents a generalization of the corresponding 

statement proved for the geometrically linear case in [I]. As an illus- 

tration of the use of the formulated principle, the problem of bending 

of a thin circular plate in the conditions of steady-state creep is con- 

sidered. 

In the derivations no distinction is made between the deformed and 

the undeformed states in taking volume and surface integrals of functions 

which do not depend upon the orientation of the respective volumes and 

surfaces. This introduces an error whose order of magnitude is not larger 

than that of the strain compared to unity. Likewise, in performing the 

differentiation we will make no distinct-on between the metric tensors 

of the deformed and the undeformed states. 

1. L,et us desiqhate by 6N the rate of work of the external surface 

loads P and body forces Q on the variations of velocities FV admissible 

by the geonletric constraints 

(1.1; 

ilere, .C is t!le bounJary of the volume I’ occupied by tLe body. In t:;is 

vcjl.dle let us introduce a parametrization x’ ( i = 1, 2, 3) .ivit!i the base 

vectors r i = ar/Ax i ant! witli t!ie metric tensor gik = ri x rk, where r is 



the position vector of the points in the body before deformation. 

Let r* be the position vector of the points in the body after deforma- 

tion. ‘Ihen IT* = IT + U, where u is the displacement vector. Note that the 

Latin indices of tensor character take the values 1, ?, 3, whereas the 

Greek ones - the values 1 and 2. 

Let us designate the rate of work of the internal stresses oik in the 

variations of the creep strain-rates G cik Ly S!J 

The following statement is valid: of all the velocities in the body 

which are admissible by the geometric constraints, the ones that actually 

occur are those which satisfy the condition 

6J -I= 0, 

Since for the strains we have 

(1.4) 

for the strain-rates we obtain 

where v =&l/at is the velocity vector of the points in the body, t is 

the time. By our assumption the geometric constraints are satisfied and 

the relations (1.4) and (1.5) are valid. We will show that, based on 

these relations, the equations of equilibrium (motion) and the natural 

static boundary conditions follow from the variational equation (1.3), 

and, inversely, by satisfying the equations of equilibrium and static 

boundary conditions, and maintaining the geometric constraints, we ob- 

tain the Equation (1.3). ‘Ih e validity of our original statement will 

follow from here. 

Substituting 6cik according to (1.5) into the variational equation 

(1.3), bearing in mind (1.1) and (1.2) and (since only t!ie variations of 

velocities are allowed) 

we obtain 
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(1.7) 

Here vi = avf3xi, *ik are contravariant components of the stress 

tensor. Applying the formula of Ostrogradsky-Gauss to the first term on 

the right-hand side of the relation (1.7) we obtain 

\ \ \ &r* * GvidV = - \ \ \ (T’iaikrc) * 6%’ dV - \ \ Gikn irk* * 6~ dS (1 .S) 
.’ + 

c . .L 
V s 

where Zi(. . . ) is the symbol of the covariant derivative with respect to 

the metric tensor gik, ni are covariant components of the interior normal 

unit vector on the surface S. FJ now takes the form 

6J = - \: \ \ {Oi (aikrk*) $ Q}*6vdT’ - SC (oikrk*ni _t P)*bvdS (1.9) 

i- * B 

It follows from the last relation that, if all the static conditions 

are satisfied and no geometric and kinematic constraints are violated, 

we have 6 J = 0. And vice versa> the equations of equilibrium (motion) 

and natural static boundary conditions follow from FJ = 0. 

With additional limitations imposed on the state of stress and de- 

formation, naturally, a more powerful result has been obtained in [2]. 

If the exponential law is used for the steady-state creep [Xl, the 

variational equation (1.3) will have the form 

ilere B is a function of time and temperature, which is determined ex- 

perimentally, CI is a constant, N is the intensity of the shear strain- 

rates, which is expressed in the form 

112 ~_ ‘$zkkik (it is assumed that &gils = 0) (1.11; 

and the relation between the stresses and the strain rates is given by 

the expressions 

It can be shown that S2J > 0 if the law (1.13) is assumed (see [l, 

p. 1091 ) . 

2. In forming the variational equation for thin plates and shells 
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(single-layered) we are going to start with the usual assumptions that 

the normal components of stress on the elemental areas parallel to the 

middle surface S, are small, as compared to the normal components of 

stress on the elemental areas perpendicular to the middle surface, and 

that the shear strains ~~~ and ~~~ are absent. Here x3 = z is the coordi- 

nate measured along the normal to the middle surface, x1, r2 are curvi- 

linear coordinates on the surface S,. 

The displacement vector of the points in the shell has the followin:; 

form 

u :: ([la --- Z\‘,U?) p” / cm (2.1 I 

where pa are base vectors on the surface ‘C,, in the parametrization x0 

(a = 1, 2), m is the unit vector, normal to the surface ‘S,, which is de- 

termined from the 

c 12 = - c21 

The meaning of 

relation 

mc,f, =: pT .’ p,7 (2.2 

== VC, c,, = c22 = 0, a --= det (n,j), aI:, pa. p5 

the quantities u, and w is clear from the form in which 

the displacement vector is written-down, (2.1). On the basis of the 

Formulas (1.5) we obtain 

(2.3) 

E 18 - - EC@” -- Z(V,W, j- V,O,), ‘ItI’ -s;rp = ‘J,U, + V7gL., “b,fi?? +- 0&lp + co;*:, 

!lere the expressions for : 
+ 

are simplified, with an error of the 

order of magnitude not larger than that of the strain, and not larger 

than II/I?, as compared to unity, where ?h is the thickness of the plate 

or shell, R is the smaller of the radii of curvature of the middle sur- 

face, ‘j,(... ) is the symbol of t!ie covariant derivative with respect to 

the metric tensor a 
4’ 

On the basis of the assumption o33 i< oaaJ (aaa) J (aaa) from physical 

relations (1.12) we obtain 

(2.4) 

a’@ _ o 
* 
@P = L][i*-1gJP, :+5, := 3%,:i, c I ,‘> 

If” 

tlic relation 

6:‘:’ __ p; = ,‘> j/” -I;,:; 
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is identically satisf:e$_within the limits of the accepted accuracy due 

to the condition tikg - 0. ‘Ihe last condition expresses the incom- 

pressibility of the material in the state of creep and is highly accurate. 

On the basis of the condition tikgik = 0, for the intensity of the 

shear strain-rates, remembering that {IS = 523 = 0, we obtain 

Thus, for thin shells we obtain the variational equation of the prin- 

ciple of stationary total rate of work for steady-state creep in the 

form 
h 

dzdS, -~ 6 1, \ P, {(cz - hV,v) pa + vm} dS (2.6; 
b+ 

!lere 3A = const is the thickness of the shell, S+ and S_ are the sur- 

faces z = h and z = - 11 respectively, I’+ and I’_ are loads on the surfaces 

s-t and #q_; the boundary of the surface S, is designated by C, and PC de- 

notes t!le vector of external loads applied to the boundary section of the 

shell C( -h Q z Q h). The body forces have been neglected. 

3. Consider a circular plate of radius r, which is subjected to a 

transverse load of intensity 1, and which deforms symmetrically. In this 

case 

n,, = 1.2, 
* .? 

~1~~ = r-q- (O<rl<l) 

rg,== -q, 1.g = it b,, = 0, E12 =(,I 
11 

(3.lj 

Ilere r 43 @ are the Christoffel symbols with the metric tensor a “ie I 

are assuming that the plate is rigiJly built-in along its contour @iwith- 

out Cut-out portions), so tllat along the line 11 = 1 t!re following con- 

ditions are valid w = 0, u1 = 0, &,‘A1 = 0. 

Let us choose the functions of displacements, which are the solution 

of the corresponding geometrically nonlinear problem in the t!leory of 
elasticity (see, for instance, [Xl ), to be the approximating functions 

for the solution of our problem 
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For tll and cz2 we obtain from the Formulas (3.1) 

IIere and below, a dot placed above the letter designates a derivative 

with respect to time. In this case the variational equation (3.6) will 

have the form 

where 

For the determination of G, we have the equation 

where 

From the Formula (3. 5) 
Y 0,m-t 1’ 

tile graphs of ix = ; U/,7 m as a function of 

a and m are shown in Fig. 1, and those of*a as a funcgion of t 
qm+ 1 

* 
= t7,y 

L - in Fig. 2. 

‘IIie dotted lines in t!le fi;ures show t:le results accorAn;_: to t:le 

linear theory, and the solid lines those accorclin;; to the rlonlinear 

theory. As can be seen from the graphs, the discrepancies between t!le 

results of the two theories are too significanL to be i;:;nored. ‘The de- 

rived variational equation (2.6) can be useL! not only for the solution 

of tile problems of bending, hut also for the problems of stahillty in the 

case of steady-state creep. 
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Fig. 1. Fig. 2. 
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