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The variational principle of virtual velocities (principle of stationary
total rate of work) is introduced, under the assumption of steady-state
creep, with finite displacements and small extensions, as compared to
unity. This principle represents a generalization of the corresponding
statement proved for the geometrically linear case in [1). As an illus-
tration of the use of the formulated principle, the problem of bending
of a thin circular plate in the conditions of steady-state creep is con-
sidered.

In the derivations no distinctiqn is made between the deformed and
the undeformed states in taking volume and surface integrals of functions
which do not depend upon the orientation of the respective volumes and
surfaces. This introduces an error whose order of magnitude is not larger
than that of the strain compared to unity. Likewise, in performing the
differentiation we will make no distinct.on between the metric tensors
of the deformed and the undeformed states.

1. Let us designate by 8N the rate of work of the external surface
loads P and body forces @ on the variations of velocities 3v admissible
by the geometric constraints

BN = SSP-(SVdS T SSSQ-GVdV (1.4
S \%

Here, S 1s the boundary of the volume V occupied by the body. In tuis
voluie let us introduce a parametrization x' (¢ =1, 2, 3) with the base

vectors T, = Jr/dx' and with the metric tensor g, =T, x T,, where I is
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the position vector of the points in the body before deformation.

Let r* be the position vector of the points in the body after Jeforma-
tion. Then r* = r + u, where u is the displacement vector. Note that the
Latin indices of tensor character take the values 1, 2, 3, whereas the
Greek ones - the values 1 and 2.

Let us designate the rate of work of the internal stresses o* in the
variations of the creep strain-rates &&;, by &M
oir =\ &s”‘ 8E V" (1.2)
"/.

The following statement 1s valid: of all the velocities in the body
which are admissible by the geometric constraints, the ones that actually
occur are those which satisfy the condition

& =0, J =M —N (1.3)
Since for the strains we have

da ou Jdu u

28 = o Tp - — o1 - . 1.4
e ox* a ark ! art gz ( )
for the strain-rates we obtain
¢, v av v du | du  av
O, = 2 H TV O A Y 1.5
ok B T g TR G E T O G T (1.5)

where v = du/dt is the velocity vector of the points in the body, t is
the time. By our assumption the geometric constraints are satisfied and
the relations (1.4) and (1.5) are valid. We will show that, based on
these relations, the equations of equilibrium (motion) and the natural
static boundary conditions follow from the variational equation (1.3),
and, inversely, by satisfying the equations of equilibrium and static
boundary conditions, and maintaining the geometric constraints, we ou-
tain the Fquation (1.3). The validity of our original statement will
follow from here.

Substituting 8§, according to (1.5) into the variational equation
(1.3), bearing in mind (1.1) and (1.2) and (since only the variations of
velocities are allowed)

2084 == (T, 71_‘?1.) B (e ) 8% = bvi | r b (1.6)

dzt " Ax* Azt

we obtain
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8J = RQS oikr,* . 8v,dV — gg KQ-(‘SvdV _ SSP-évdS (1.7)

\4 Vv <

Here v, = dv/3xt, o' are contravariant components of the stress
tensor. Applying the formula of Ostrogradsky-Gauss to the first term on
the right-hand side of the relation (1.7) we obtain

\ QS sitr* - dvidV = — | g S (Visthr,) - 8v dV — § (s#nme-ovds  (1.8)
AR} 49 A
where V. (...) is the symbol of the covariant derivative with respect to

the metric tensor g,,, n; are covariant components of the interior normal
unit vector on the surface S. 5J now takes the form

87 = —{{{(v:(tr) + Q-ovar — S {(s#r,*n, + P)-dvdS  (1.9)
B e <
It follows from the last relation that, if all the static conditions
are satisfied and no jeometric and kinematic constraints are violated,
we have 8J = 0. And vice versa, the equations of equilibrium (motion)
and natural static boundary conditions follow from &J = 0.

With additional limitations imposed on the state of stress and de-
formation, naturally, a more powerful result has been obtained in [2].

If the exponential law is used for the steady-state creep [1], the
variational equation (1.3) will have the form

c Hyt1 ¢
a%\&—ﬁeﬂ/—agwq.vdvﬁaﬂ\p.vds:o (1.10)
3N ) B AR X

flere B is a function of time and temperature, which is determined ex-
perimentally, W is a constant, H is the intensity of the shear strain-
rates, which is expressed in the form

H? o= 2F,,kik (it is assumed that ;8% == 0) dan

and the relation between the stresses and the strain rates is given by
the expressions

Sl
ok ggik o I

(1 —p) B* 98y 35 == sty (1.12)

It can be shown that 52J > 0 if the law (1.12) is assumed (see (1,

p.109]).

2. In forming the variational equation for thin plates and shells
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(single-layered) we are going to start with the usual assumptions that
the normal components of stress on the elemental areas parallel to the
middle surface S; are small, as compared to the normal components of
stress on the elemental areas perpendicular to the middle surface, and
that the shear strains &,, and €,, are absent. Here x® = z is the coordi-
nate measured along the normal to the middle surface, xl, x? are curvi-
linear coordinates on the surface .

The displacement vector of the points in the shell has the following
form
u = (U ——zVaw) p* -l wm (2.h

where p_ are base vectors on the surface S; in the parametrization %
(e =1, 2), m is the unit vector, normal to the surface S;, which is de-
termined from the relation

mMCyy == PJ - P"% - (J‘__
e = — a1 = Va, €y = Cog = U, @ == det (a,s), axs: - pa-ps
The meaning of the quantities u and w is clear from the form in which

the displacement vector is written down, (2.1). On the basis of the
Formulas (1.5) we obtain

(2.3)
o : el - | - . N : :
Eap = Eag® — 2(Vats 4 Vo), 283 = Vavp + Vars - 2bapt + wap 4 0,0g
dw du . 4
. a n G L ou om B L B,
Wy = vf s B, 0= e byn - - P:';;:* Wy = Vguw - byry,

Here the expressions for S are simplified, with an error of the
order of magnitude not larger than that of the strain, and not larger
than h/R, as compared to unity, where 2h is the thickness of the plate
or shell, R is the smaller of the radii of curvature of the middle sur-
face, V (...} is the symbol of the covariant derivative with respect to

the metric tensor W

On the basis of the assumption o33 << % (GGG)J (ayy) from physical

relations (1.12) we obtain
(2.4)

l) ‘r
= & u—1 B . e rs N P—-1 - Syt o
3P — 5% = BE/II g8, 3o, == 570en, S0 = e HYHE 4 a7 Eeav)

the relation
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is identically satisfied within the limits of the accepted accuracy due
to the condition §ikg'k = 0. The last condition expresses the incom-
pressibility of the material in the state of creep and is highly accurate.

On the basis of the condition Eikglk = 0, for the intensity of the
shear strain-rates, remembering that §,, = §,; = 0, we obtain

1 aH M
(L +p) B* 239

H,® o= 2 (Bapl® 4 0B 00pl™) 0% = (2.9)

Thus, for thin shells we obtain the variational equation of the prin-
ciple of stationary total rate of work for steady-state creep in the
form

h
NP {(rat £ g7 4 emydSy— 8 \\ Pei(va — 29.0) p* -+ vmy dzdC = 0
o ¢=h

lere 22 = const is the thickness of the shell, S, and S_ are the sur-
faces z = h and z = - h respectively, P, and P_ are loads on the surfaces
Sy and S_; the boundary of the surface S; is designated by C, and Pc de-
notes the vector of external loads applied to the boundary section of the
shell C( -k < z < h). The body forces have been neglected.

3. Consider a circular plate of radius r, which is subjected to a
transverse load of intensity g, and which deforms symmetrically. In this

case
ay, == r, Aya = 170)° O
1 = ! .
2= "1 11;‘ = T, baﬂzo, §1g= (31)
1 dv L dv dw 1 9% . 1 v 1 1 av
ne .. - Yev 2 e L 90 22 . T S S it
a g r on PR S g a*gyy = ; 23 n o

Here [ _»® are the Christoffel symbols with the metric tensor a . We
are assuming that the plate 1s rigidly built-in along its contour (with-
out cut-out portions), so that along the line 1 = 1 the following con-
ditions are valid w = 0, u, =0, dw/on = 0.

Let us choose the functions of displacements, which are the solution
of the corresponding geometrically nonlinear problem in the tlieory of
elasticity (see, for instance, [3]), to be thc approximatinz functions
for the solution of our problem
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2
oy, o=t

7 Do 13 o
(n—awtdr—pn) (6.2

for €, and &,, we obtain from the Formulas (3.1)

e wouy | 7 Lo . R R g0
Ell(“' — N Jl ol it 7]) - .21]4 .- ’g l]‘) -1 I’—2O4(1 - 3'] )

oLy 3.3)
a0 [T Smey bt — Byel B 41 ) >
S22 R *gl]} . yl

Here and below, a dot placed above the letter designates a derivative
with respect to time. In this case the variational equation (2.6) will
have the form

o\ - Bl 1, s, — o | gqu}dso —0 (3.4)

S, —h S,

where
HE= 4l(anE)? - (@l (11028 £}

For the determination of #; we have the equation

) . 1 m+l —m
a N S e 2 e e g 2Im 3.0
R {\ ndn \ [E01% 4 C20” 1 S1abenl } (3-1)
% 0 e
where
7 ‘ . 1 3 = ¢
el T O(KT) 420t ']b) 2003w = fatt hi
~ 7 2 1 6 2L = 2 L
for = 0 o’ — ) 2 )
q, -~ q-‘fAﬁ~£fiA~__- m == — = s g
* TG SO o ) e =h

m

M + 1@ .
From the Formula (3.5) the graphs of & = am ld/q* as a function of

« and m are shown in Fig. 1, and those of « as a function of ¢t = tg "/
mt1 . . * *

2 - 1n Fig. 2

2 g. 2.

The dotted lines in the figures show the results according to the
linear theory, and the solid lines those according to the nonlinear
theory. As can be seen from the graphs, the discrepancies between the
results of the two theories are too significant to be 1ynored. The de-
rived variational equation {2.6) can be used not only for the solution
of the problems of bending, but also for the problems of stability in the

case of steady-state creep.
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